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Abstract

We propose a new cyclic proof system for automated, equa-
tional reasoning about the behaviour of pure functional pro-
grams. The key to the system is the way in which cyclic
proofs and equational reasoning are mediated by the use
of contextual substitution as a cut rule. We show that our
system, although simple, already subsumes several of the
approaches to implicit induction variously known as łin-
ductionless inductionž, łrewriting inductionž, and łproof by
consistencyž. By restricting the form of the traces, we show
that global correctness in our system can be verified incre-
mentally, taking advantage of the well-known size-change
principle, which leads to an efficient implementation of proof
search. Our CycleQ tool, implemented as a GHC plugin,
shows promising results on a number of standard bench-
marks.

CCS Concepts: · Theory of computation → Equational

logic and rewriting; Logic and verification.
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1 Introduction

An advantage of pure functional programming is the ease
with which one can reason about the behaviour of programs.
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Interesting properties can often be proven using only a com-
bination of induction and equational reasoning.

However, as is well known, inductive theorem proving is
challenging. The incompleteness of typical inductive theories
and the non-analyticity of their induction rules excludes
a general algorithmic solution [12]. Moreover, even if we
restrict our attention to what we might loosely imagine are
the cases we care about, namely those functional programs
that occur in practice, the situation is still extremely complex.
Functional programmers employ a variety of inductive

and mutually inductive datatypes and rarely restrict them-
selves to functions defined by structured recursion schemes.
Hence, not only do we need induction principles for each
datatype, but we should expect that these schemes can be
nested, combined for mutual induction, or generalised to
account for non-structural recursion.
Despite this, there are already several tools that have

shown success at automatically proving equational prop-
erties of functional programs. However, to the best of our
knowledge, none have a smooth treatment of the more com-
plicated induction schemes that are frequently required in
practice. For example, proofs that require mutual induction
are not supported by default in either HipSpec [14], Isa-
Planner [20] or Zeno [45], and reasoning about mutually
recursive functions is described in the ACL2 manual as be-
ing ła bit awkwardž [32]. Moreover, in several of these tools,
mutually inductive datatypes are simply not supported.

Using induction schemes that are tailored to specific con-
jectures is important; although automatic lemma discovery
techniques can sometimes compensate, they have a number
of weaknesses such as limited applicability, over general-
isation, and scalability for complex formulas [26]. Hence,
although lemma discovery is crucial in all but the simplest
inductive proofs, any improvement to the underlying induc-
tive proof system, reducing the burden on lemma generation
heuristics, is worthwhile.
In this paper, we propose a novel cyclic proof system for

equational reasoning and an accompanying algorithm for ef-
ficient proof search, which we have implemented as a plugin
for GHC Ð CycleQ. The system seamlessly supports com-
plex forms of inductive argument, such as nested or mutual
induction, and is agnostic about lemma discovery techniques
(which we leave aside as an orthogonal concern).
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𝑛 � 𝑛

Var 𝑣 � Var 𝑣

mapT id (Var 𝑣) � (Var 𝑣)

Cst 𝑐 � Cst 𝑐

mapT id (Cst 𝑐) � (Cst 𝑐)

(0) 𝑒1 � 𝑒1

mapE id 𝑒1 � 𝑒1

(0) 𝑒2 � 𝑒2

mapE id 𝑒2 � 𝑒2

App (mapE id 𝑒1) (mapE id 𝑒2) � App 𝑒1 𝑒2

mapT id (App 𝑒1 𝑒2) � App 𝑒1 𝑒2

mapT id 𝑡 � 𝑡

MkE (mapT id 𝑡) 𝑛 � MkE 𝑡 𝑛

mapE id (MkE 𝑡 𝑛) � MkE 𝑡 𝑛

0: mapE id 𝑒 � 𝑒

Figure 1. A cyclic proof of mapE id 𝑒 � 𝑒 .

1.1 Cyclic Proofs and Equational Reasoning

Cyclic proofs occupy a part of non-wellfounded proof theory,
in which infinite proof trees are required to be regular, e.g.
representable as a finite graph [6, 46]. Unsound arguments
are excluded by requiring a global correctness condition on
the infinite paths, such as inclusion in a particular 𝜔-regular
language. The regularity restrictionmakes cyclic proofs quite
well behaved, and there has recently been a number of works
exploring the theoretical and practical advantages of this
form of circular reasoning [6, 8, 9, 16ś18, 25, 34, 47, 49, 52].

On the practical side, one of the major driving forces has
been the potential to improve state-of-the-art automated
reasoning. Cyclic proof systems appear to better capture the
exploratory nature of goal-directed proof search, especially
with respect to łinductivež reasoning. A particular advantage
is the ability to avoid committing to either a fixed menu of
induction schemes or a fixed choice of induction variables
in advance. Rather, systems can justify a circular argument
post hoc through an appeal to infinite descent bespoke to
the proof structure discovered by the search.
For example, consider a mutually inductive definition of

two types comprising annotated syntax trees1 in Haskell:

data Term a data Expr a

= Var a = MkE (Term a) Nat

| Cst Nat

| App (Expr a) (Expr a)

We can define two functions: mapT and mapE, that express
the functoriality of these type constructors and conjecture
that the relevant laws hold. Fig. 1 shows the cyclic proof
obtained by our system for the identity law for mapE. Here,
and elsewhere, the cycle is presented by labelling a node
in the proof tree with a number, e.g. labelling the root 0,
and using this label elsewhere as a premise without further
justification. Equations are given using the symbol � to em-
phasize that they are regarded as unordered (i.e. the left- and
right-hand sides are interchangeable). See Example 3.2 and
the following remark for a fuller description of this notation.

1A typical annotation is the line and column numbers marking their prove-

nance in some source code, but here we use a single natural number for

simplicity.

Without a proper treatment of mutual induction, an in-
ductive theorem prover would have to guess, heuristically,
a strengthening of the inductive property, e.g. adding the
conjunct mapT id 𝑡 � 𝑡 to the original goal. In our cyclic
system, however, the two cycles depicted using label 0 fall
out naturally from equational reasoning, and the fact that
each involves a decrease, i.e. that the proof is globally correct,
is easily verified.

A key consideration in the design of an automated cyclic
proof system is how to control the formation of cycles in the
proof. Technically, it is sound to form cycles whenever proof
search discovers a node of the proof tree that is logically
stronger than an ancestor and for which the newly formed
cycle would satisfy the global correctness condition. Since,
in general, we cannot expect there to be any syntactical
relationship between the node and its ancestor, the formation
of cycles is closely related to the use of cuts in the proof.
Indeed Tsukada and Unno [52] have demonstrated that many
techniques developed for efficient software model checking
can be viewed as the introduction of cuts into cyclic proofs
to discharge proof obligations earlier.
In Brotherston, Gorogiannis and Petersen’s state-of-the-

art CyclistFO prover, cycles are formed by a restricted kind
of cut in which the node follows from its ancestor by a com-
bination of weakening and instantiation [9]. However, the
authors note that the lack of a more general cut rule and
the lack of native support for equational reasoning causes
their system to have difficulty with heavily-equational goals,
such as the commutativity of addition: 𝑥 + 𝑦 = 𝑦 + 𝑥 . They
conjecture that a cyclic proof could be obtained if the lemma
𝑥 + S 𝑦 = S (𝑥 + 𝑦) were supplied as a hint.

In fact, the cyclic proof system that we develop in this
paper can prove the commutativity of addition automatically,
without any externally supplied lemma such as the one above.
The synthesized proof is given in Fig. 4, but we defer its
discussion until later.

Our system consists of four rules: the reflexivity of equal-
ity, evaluation of program expressions, reasoning by cases,
and substitution of equals for equals. The key is the way that
cyclic proof and equational reasoning are mediated through

396



CycleQ: An Efficient Basis for Cyclic Equational Reasoning PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

Nil � Nil

𝑦 � 𝑦

(0) take (len 𝑧𝑠) (Cons 𝑧 𝑧𝑠) � take (len 𝑧𝑠) (Cons 𝑧 𝑧𝑠)

butLast (Cons 𝑧 𝑧𝑠) � take (len 𝑧𝑠) (Cons 𝑧 𝑧𝑠)

Cons 𝑦 (butLast (Cons 𝑧 𝑧𝑠)) � Cons 𝑦 (take (len 𝑧𝑠) (Cons 𝑧 𝑧𝑠))

0: butLast (Cons 𝑦 𝑦𝑠) � take (len 𝑦𝑠) (Cons 𝑦 𝑦𝑠)

Nil � Nil

Nil � Nil

𝑥 � 𝑥 (0)

Cons 𝑥 (butLast (Cons 𝑦 𝑦𝑠)) � Cons 𝑥 (take (len 𝑦𝑠) (Cons 𝑦 𝑦𝑠))

butLast (Cons 𝑥 𝑥𝑠) � take (len 𝑥𝑠) (Cons 𝑥 𝑥𝑠)

butLast 𝑥𝑠 � take (len 𝑥𝑠 − S Z) 𝑥𝑠

Figure 2. A cyclic proof of butLast 𝑥𝑠 � take (len 𝑥𝑠 − S Z) � 𝑥𝑠 .

the use of (contextual) substitution as a cut rule.

𝑀 � 𝑁 𝐶 [𝑁𝜃 ] � 𝑃
(Subst)

𝐶 [𝑀𝜃 ] � 𝑃

We refer to the left-hand premise of this rule as the lemma

and the right-hand premise as the continuation. This rule
says that given a lemma 𝑀 � 𝑁 and a goal 𝐶 [𝑀𝜃 ] � 𝑃

containing an instance of𝑀 , the proof can be continued by
solving 𝐶 [𝑁𝜃 ] � 𝑃 in which the instance of 𝑀 has been
replaced by a matching instance of 𝑁 .

Although, in principle, the choice of equation comprising
the lemma may be completely unrelated to the rest of the
proof tree (e.g. it may be supplied by a human or conjectured
by a theory exploration tool), our proof search algorithm is
able to synthesize proofs for 61% of the relevant problems
from the IsaPlanner benchmark suite whilst only choosing
lemmas𝑀 � 𝑁 that already occur as nodes within the same
proof tree, i.e. without the need to invoke any potentially
costly lemma discovery technology. For example, our system
can prove butLast 𝑥𝑠 � take (len 𝑥𝑠 − S Z) � 𝑥𝑠 in ~40ms.
A proof can be seen in Fig. 2. By comparison, HipSpec fails
to prove the same result after ~40 s, an attempt that involved
22 synthesised lemmas, 12 of which failed [42].

The substitution rule can be seen in the two rule applica-
tions of Fig. 1 that have (0) as a premise. Here, the lemma
is chosen to be the node labelled 0 at the root of the tree
and the continuation is simply discharged by reflexivity. The
usage in Fig. 2 is similar. In the proof of the commutativity
of addition Fig. 4, the continuation labelled (2) is much more
complex and contains a nested inductive argument.

1.2 Simulation of Inductionless Induction

It is well known that cyclic proof systems can already simu-
late explicit structural induction schemes, and we addition-
ally show that our system subsumes various kinds of implicit
induction based on Knuth-Bendix completion, such as łin-
ductionless inductionž and łproof by consistencyž, that were
intensively studied in the 1980s and 1990s, e.g. [10, 19, 21,
23, 29ś31, 39].

On the surface, these approaches seem quite distinct from
cyclic proofs; rather than proving a conjecture by induction,
they posit it as an axiom and attempt to show that the result-
ing theory is consistent. In order to connect the approaches,
we use term rewriting induction, in the sense of Reddy [40],
as a stepping stone, which is already known to subsume
proof by consistency. The key is to observe that the uncon-
strained use of hypotheses in Reddy’s system gives rise to
the structure of cyclic preproofs and that global correctness
is guaranteed by construction as progress proceeds by rewrit-
ing and equations are orientated by a fixed (well-founded)
reduction order.

Term rewriting approaches to induction share some of the
advantages of cyclic proofs. They support mutual induction,
for example, and do not require a fixed induction scheme
in advance. However, our analysis also highlights a disad-
vantage by comparison with our cyclic system: rewriting
approaches require that any equations discovered by the
proof search be orientable with respect to the fixed reduc-
tion order. Systems are not only very sensitive to the choice
of the order in practice, but this requirement also precludes
theorems like the above commutativity of addition, the sym-
metry of which is inherently unorientable. For a critique see
the 1988 POPL paper of Garland and Guttag [22].

1.3 The CycleQ Theorem Prover

Since our proof system is quite simple, it is straightforwardly
amenable to a goal-directed proof-search algorithm. How-
ever, a naïve implementation will quickly run into perfor-
mance difficulties.

One source is in the number of nodes that are candidates
for cycles. As mentioned previously, the formation of cycles
is enabled by the (Subst) rule restricted to employ only
existing nodes of the current proof tree as the lemma𝑀 � 𝑁 .
However, the number of eligible lemmas to consider will
consequently grow with the size of the proof.

The number of eligible lemmas can be drastically reduced
by using a number of further restrictions motivated by redun-
dancies we identify in the structure of proofs. For example,
if a lemma is itself justified by the (Subst) rule, we can
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use its premise directly as contexts and substitutions are
composable.

Another bottleneck is in the verification of the global cor-
rectness condition. This source of inefficiency was already
identified for the Cyclist prover, where a large proportion
of the overall proof time is spent checking the global cor-
rectness of proof trees that turn out to be unsound [47]. In
this work, we avoid a similar problem by restricting our
attention to variable-based traces and exploiting the incre-
mental nature of goal-directed proof search. We annotate
the proof graph with an abstract domain representing the
𝜔-regular language of paths Ð Lee, Jones and Ben-Amram’s
size-change graphs [35]. Encoding the information directly
in the proof graph allows the global correctness argument
to be updated as each node is uncovered, and thus, unsound
cycles are represented explicitly so that proof search can be
terminated as soon as one is detected. Furthermore, there is
no recomputation of soundness for shared proof fragments.

We implemented our approach as a plugin for GHC called
CycleQ. It currently supports a small subset of Haskell, in-
cluding top-level recursive functions, algebraic datatypes,
and polymorphism. Our evaluation on a number of bench-
marks shows that it performs well on standard and mutual
induction problems and can sometimes prove more complex
goals that would typically require lemmas in other systems.

Contributions. Our main contributions are as follows:

• We identify contextual substitution as the appropriate
means for introducing cycles into an equational proof,
presenting a simple proof system based on this mecha-
nism.

• We show that, when targeting proofs about functional
programs, our system subsumes approaches to implicit
induction, known variously as łinductionless inductionž,
łproof by consistencyž and łrewriting inductionž.

• We show that, by restricting to variable traces, the global
correctness condition of cyclic proof reduces to Lee, Jones
and Ben-Amram’s size-change principle. This approach
leads directly to an efficient and incremental procedure
for detecting and verifying cycles based on size-change
graphs.

• We identify several natural restrictions on contextual sub-
stitution that allow it to play the role of an efficient match-
ing function for detecting potential cycles. Our evalua-
tion on a number of benchmarks shows that it performs
well on standard and mutual induction problems and can
sometimes prove more complex goals that would typically
require lemmas in other systems.

Outline. The remainder of the paper is structured as fol-
lows. In Section 2, we introduce necessary preliminaries and,
in Section 3, we present our simple cyclic proof system for
equational reasoning. In Section 4, we show that the system
already subsumes Reddy’s system of rewriting induction. In

Section 5, we develop the heuristics necessary for making the
formation of cycles efficient, and we show that size-change
termination can be used to enable an incremental approach
to checking the global correctness condition. A description
of our implementation and its evaluation comprise Section 6,
and we conclude in Section 7 with a discussion of related
work.

2 Preliminaries

For the purpose of this formalism, we will consider a higher-
order rewriting system and its induced equational theory.
Although the intended application of our work is functional
programs, this setting is more general and facilitates direct
comparison with rewriting induction (Section 4).
In this section, we will cover some definitions from term

rewriting used throughout the paper.
We assume a fixed signature consisting of a finite set of

algebraic datatypes 𝐷 and function symbols Σ.
For the types of our formal system, we use simple types

built over 𝐷 , i.e. 𝜏, 𝜎 ≔ 𝑑 ∈ 𝐷 | 𝜏 → 𝜎 . The order of a type
is defined as follows:

ord(𝑑) ≔ 0

ord(𝜏 → 𝜎) ≔ max{ord(𝜏) + 1, ord(𝜎)}

Each function symbol is assigned a type, written 𝑓 : 𝜏 ∈ Σ.
Furthermore, function symbols are partitioned into a set of
constructors Σcon (e.g. Cons, Nil, Zero, Succ), which are
required to be atmost first-order, and defined functions Σdef

(e.g. map, add). We write Σcon (𝑑) for the set of constructors
whose return type is 𝑑 .

Terms are generated from application, function symbols
Σ, and variables drawn from some countable set.

𝑀, 𝑁 F 𝑥 | 𝑓 ∈ Σ | 𝑀 𝑁

As usual, we associate applications to the left.
A type environment, typically Γ or Δ, is a set of variable-

type pairs, written 𝑥 : 𝜏 . We will write Γ, Δ (or Γ, 𝑥0 :

𝜏0, . . . , 𝑥𝑛 : 𝜏𝑛) for the disjoint union of two environments.
The judgement Γ ⊢ 𝑀 : 𝜏 , defined by usual typing rules,
asserts that𝑀 is a well-typed term of type 𝜏 for the environ-
ment Γ.
In what follows, we will restrict our attention to well-

typed terms, but we omit the rules for simple typing, which
are standard.
Terms give rise to a natural set of (one-hole) contexts,

generically written 𝐶 [·], which we define as:

𝐶 [·] F · | 𝐶 [·] 𝑀 | 𝑀 𝐶 [·]

where𝑀 ranges over terms. We write 𝐶 ◦ 𝐷 for their com-
position, where (𝐶 ◦ 𝐷) [𝑋 ] ≔ 𝐶 [𝐷 [𝑋 ]] for all terms 𝑋 .

A term𝑀 is subterm of 𝑁 , written𝑀 ⊴ 𝑁 , if there exists
a context 𝐶 such that 𝐶 [𝑀] = 𝑁 . When the witness 𝐶 is
non-trivial, i.e. not ·, we write𝑀 ◁ 𝑁 .

Lemma 2.1. ⊴ is a well-founded, partial order.
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Lemma 2.2. The relation on contexts 𝐷 ⊑ 𝐶 defined as the

existence of some context 𝐸 such that 𝐶 = 𝐷 ◦ 𝐸 is a partial

order. Furthermore, if two unrelated contexts𝐶 and𝐷 are equal

for terms 𝑀 and 𝑁 , i.e. 𝐶 [𝑀] = 𝐷 [𝑁 ], then 𝑀 ⊴ 𝐷 [𝑋 ] for

any term 𝑋 .

Substitutions, typically 𝜃 , are partial functions from vari-
ables to terms with the usual action 𝑀𝜃 on terms 𝑀 . We
write 𝜃1 ◦ 𝜃0 for the composition of substitutions, defined as
𝑥 ↦→ (𝜃0 (𝑥))𝜃1.

A stable order on terms ≤ is a partial order such that
𝑀𝜃 ≤ 𝑁𝜃 follows from𝑀 ≤ 𝑁 for any substitution 𝜃 .
A rewrite rule is a pair of terms, written 𝑀 → 𝑁 such

that 𝑀 is of the form 𝑓 𝑀0 · · · 𝑀𝑛 where 𝑓 ∈ Σdef, each
𝑀𝑖 doesn’t contain any defined function symbols, and both
Γ ⊢ 𝑀 : 𝑑 and Γ ⊢ 𝑁 : 𝑑 for some type environment Γ and a
datatype 𝑑 .

For a set of rewrite rules 𝑅, we define the one-step reduc-

tion as𝐶 [𝑀𝜃 ] →𝑅 𝐶 [𝑁𝜃 ] whenever𝑀 → 𝑁 ∈ 𝑅. We write
𝑀 →∗

𝑅
𝑁 for the reflexive-transitive closure of this relation.

A term𝑀 is in 𝑅-normal form when there does not exist
a term 𝑁 such that𝑀 →𝑅 𝑁 . We write𝑀 ↓𝑅 for the term 𝑁

that is a normal form such that𝑀 →∗
𝑅
𝑁 .

Remark 2.1 (Assumptions). We will assume some fixed set
of rules 𝑅 such that the induced relation →∗

𝑅
is:

• Complete, in the sense that, no closed first-order term
headed by a defined function symbol is in normal form.
That is, for any term ∅ ⊢ 𝑓 𝑀0 · · · 𝑀𝑛 : 𝑑 with 𝑓 ∈ Σdef,
there exists some 𝑁 such that 𝑓 𝑀0 · · · 𝑀𝑛 →𝑅 𝑁 .

• And both weakly normalising and confluent so that [·] ↓𝑅
is a well-defined function on terms.

It is easy to ensure that the rewriting system correspond-
ing to a functional program is complete and is often guaran-
teed by compilers. Pure functional programs are also conflu-
ent. On the other hand, the assumption that the program is
weakly normalising is not without loss of generality. How-
ever, it has been observed that problems of non-termination
are relatively rare in comparison to those of functional cor-
rectness. It is also worth noting that although undecidable,
practical algorithms exist for verifying this property.

Example 2.1. The reduction relation →𝑅 induced by the
following program clearly satisfies the assumptions of Re-
mark 2.1.

add Zero y = y

add (Succ x) y = Succ (add x y)

map f Nil = Nil

map f (Cons x xs) = Cons (f x) (map f xs)

An equation, generically 𝜙 or𝜓 , is an unordered pair of
terms 𝑀 and 𝑁 such that Γ ⊢ 𝑀, 𝑁 : 𝑑 for a type environ-
ment Γ and datatype 𝑑 . Equations are written as Γ ⊢ 𝑀 � 𝑁 ,

or equivalently Γ ⊢ 𝑁 � 𝑀 . When clear from the context,
we will omit the type enironment.

A (ground) instance of an equation Γ ⊢ 𝑀 � 𝑁 is a
subsitution 𝛼 , such that, ∅ ⊢ 𝛼 (𝑥) : 𝜏 for all 𝑥 : 𝜏 ∈ Γ. An
equation Γ ⊢ 𝑀 � 𝑁 is satisfied by an instance, written
𝛼 ⊨ 𝑀 � 𝑁 , if 𝑀𝛼 ↓𝑅 = 𝑁𝛼 ↓𝑅 . If it is satisfied by all such
instances, then we say it is valid and write ⊨ 𝑀 � 𝑁 .

Note that the satisfaction relation, · ⊨ ·, and by extension
validity, is well-defined as normalisation is a function and
syntactic equality is a symmetric relation.

3 Cyclic Proofs

An infinitary proof generalises traditional finite derivation
trees to possibly infinite ones. Such proofs are not necessarily
sound; the standard approach is, therefore, to first define
preproofs, which are later refined by a global condition to
ensure the argument is well-founded [7].
Cyclic proofs are a subclass of infinitary proofs whose

derivation trees are regular, i.e. there are only finitely many
distinct subtrees. Such proofs can be represented as finite
but incomplete derivation trees where unjustified premises
called łbudsž refer to other vertices called łcompanionsž [6].
We will, however, present the cycles of a preproof directly.

Definition 3.1. A (cyclic) preproof is a tuple 𝑃 = (𝑉 , 𝑒, 𝑟, 𝑝)

where𝑉 is a finite set of vertices, typically an initial segment
of the natural numbers, such that, for each vertex 𝑣 ∈ 𝑉 :

• There is an associated equation 𝑒 (𝑣), inference rule from
Fig. 3 𝑟 (𝑣), and a finite sequence of vertices 𝑝 (𝑣) ∈ 𝑉 ∗

called the premises. We write 𝑝𝑖 (𝑣) for the 𝑖
th element of

𝑝 (𝑣) starting with 𝑝0
• And

𝑒 (𝑝0 (𝑣)) . . . 𝑒 (𝑝𝑛 (𝑣))

𝑒 (𝑣)

is a well-formed instance of the rule 𝑟 (𝑣).

The underlying graph of a preproof 𝑃 = (𝑉 , 𝑒, 𝑟, 𝑝) is a
graph 𝐺 (𝑃) = (𝑉 , 𝐸), over the same set of vertices, where:

𝐸 ≔ {(𝑣, 𝑝𝑖 (𝑣)) | 𝑣 ∈ 𝑉 , 𝑝𝑖 (𝑣) is defined}

Note that when a premise appears as part of a cycle, it
needn’t be a direct ancestor. In particular, a cousin node may
be used as a lemma by the (Subst) rule.

Remark 3.1 (Rules in Fig. 3 defining equational preproofs).

1. The rules are named according to their goal-orientated
use. Hence (Reduce) refers to the reduction of a goal
to the premise.

2. In this light, we will refer to the left- and right-hand
premises the (Subst) rule as the lemma and continu-
ation respectively. The reason behind this convention
will later become apparent when discussing our proof
search algorithm Section 6.

3. As the usual rules of transitivity, congruence, and in-
stantiation are instances of (Subst), they are trivially
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(Refl)
Γ ⊢ 𝑀 � 𝑀

Γ ⊢ 𝑀 ′
� 𝑁 ′

(Reduce) (𝑀 →∗
𝑅
𝑀 ′, 𝑁 →∗

𝑅
𝑁 ′)

Γ ⊢ 𝑀 � 𝑁

Δ ⊢ 𝑀 � 𝑁 Γ ⊢ 𝐶 [𝑁𝜃 ] � 𝑃
(Subst)

Γ ⊢ 𝐶 [𝑀𝜃 ] � 𝑃

∀𝑘 ∈ Σcons (𝑑) Γ,Δ ⊢ 𝑀 [𝑘 𝑥0 · · · 𝑥𝑛/𝑥] � 𝑁 [𝑘 𝑥0 · · · 𝑥𝑛/𝑥]
(Case)

Γ, 𝑥 : 𝑑 ⊢ 𝑀 � 𝑁

Figure 3. The inference rules for preproofs

derivable. Symmetry follows immediately from the use
of unordered equations. In particular, any combination
of these rules can be used to form cycles.

4. In the rule (Case), there are as many equations in the
premises as there are constructors of the datatype 𝑑 .

A trivial example of a preproof can be constructed by using
substitution to rewrite any equation according to itself, thus
assuming the exact equation which is to be proved.

Example 3.2. Let 𝑉 = {0, 1}, let 𝑒 (0) and 𝑒 (1) be the equa-
tions Cons 𝑥 𝑥𝑠 � Nil and Nil � Nil, let 𝑟 (0) and 𝑟 (1) be the
rules (Subst) and (Refl), and let 𝑝 (0) = [0, 1] and 𝑝 (1) = [].
Then (𝑉 , 𝑒, 𝑟, 𝑝) is a preproof satisfying Definition 3.1.

Remark 3.2 (Representing preproofs).

1. Here, and in what follows, we will depict preproofs
as a set of finite trees with labelled vertices and łback
edgesž that reference those labels. For example, the
preproof of Example 3.2 would be presented as follows:

(0)
(Refl)

Nil � Nil
(Subst)

0: Cons 𝑥 𝑥𝑠 � Nil

2. To keep proofs compact, we shall also omit vertices
justified by (Reduce).

Although this example clearly illustrates that preproofs
are not necessarily sound arguments, they are, however,
locally sound in the sense that the premises of an inference
rule justify its conclusion. This property is witnessed by
relating instances of a vertex to those of its premises, which is
sufficient for concluding that the vertex’s equation is satisfied
for that instance.

Definition 3.3. Let (𝑉 , 𝑒, 𝑟, 𝑝) be a cyclic preproof with
vertex 𝑣 ∈ 𝑉 . Then for any instance of 𝑒 (𝑣), 𝛼 , a preceding
instance is a pair (𝑖, 𝛽), where 𝑝𝑖 (𝑣) is a premise and 𝛽 is an
instance of 𝑒 (𝑝𝑖 (𝑣)) such that one of the following conditions
is met depending on the rule 𝑟 (𝑣):

• (Case) where 𝑥 : 𝑑 is the variable upon which case
analysis is performed. In this case, if (𝛼 (𝑥)) ↓𝑅 is of the
form 𝑘 𝑀0 · · · 𝑀𝑛 and 𝑝𝑖 (𝑣) is the premise associated
with the constructor 𝑘 using fresh variables 𝑥0, . . . , 𝑥𝑛 ,
then (𝑖, 𝛽) is a preceding instance where 𝛽 is defined

as follows:

𝛽 (𝑦) ≔

{

𝑀𝑖 𝑦 = 𝑥𝑖

𝛼 (𝑦) 𝑦 ≠ 𝑥

• (Subst) with substitution 𝜃 . In this case, (0, 𝛼 ◦ 𝜃 )

and (1, 𝛼) are preceding instances for the lemma and
continuation respectively.

• Otherwise, there is a unique premise, for which (0, 𝛼)

is a preceding instance.

The following lemma states the important property that
preceding instances must witness Ð the contrapositive of
local soundness (i.e. from an invalid conclusion, one can
derive an invalid premise).

Lemma 3.1. Let (𝑉 , 𝑒, 𝑟, 𝑝) be a cyclic preproof with vertex

𝑣 ∈ 𝑉 . If 𝛼 is an instance of 𝑒 (𝑣) such that 𝛼 ⊭ 𝑒 (𝑣), then there

exist a preceding instance (𝑖, 𝛽) where 𝛽 ⊭ 𝑒 (𝑝𝑖 (𝑣)).

There are two direct corollaries of this lemma. The first is
that the equation of each vertex in a cyclic preproof is valid
if all of its premises are:

Corollary 3.2 (Local soundness). Let (𝑉 , 𝑒, 𝑟, 𝑝) be a cyclic
preproof with vertex 𝑣 ∈ 𝑉 . If the equation of each premise is

valid, i.e. ⊨ 𝑒 (𝑝𝑖 (𝑣)) when 𝑝𝑖 (𝑣) is defined, then ⊨ 𝑒 (𝑣).

However, Lemma 3.1 also implies that we can extract an
infinite sequence of invalid equations from any invalid equa-
tion in a cyclic preproof. This process also gives us the cor-
responding instances that are not satisfied.
If a parallel sequence of terms can be constructed from

these instances that is infinitely decreasing according to
some well-founded order, we have shown there are no in-
valid equations. To this end, a global condition is placed upon
cyclic preproofs based on the notion of a trace. A trace is
another sequence of terms intuitively capturing any depen-
dency between the instances of a conclusion and its premise.

Definition 3.4. A path through a preproof 𝑃 = (𝑉 , 𝑒, 𝑟, 𝑝)

is a finite or infinite sequence of vertices (𝑣𝑖 ) such that, for
each 𝑖 ∈ N, 𝑣𝑖+1 is a premise of 𝑣𝑖 , i.e. there is some 𝑗 such
that 𝑣𝑖+1 = 𝑝 𝑗 (𝑣𝑖 ).

Definition 3.5. Let ≤ be a stable, well-founded order. A
≤-trace along a path (𝑣𝑖 ) is a finite or infinite sequence of
terms (𝑇𝑖 ) where 𝑇𝑖+1 is constrained according to the rule
𝑟 (𝑣𝑖 ):
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(Refl)
S 𝑥 ′ � S 𝑥 ′

(2)
(Refl)

S (add 𝑦′ (S 𝑥 ′)) � S (add 𝑦′ (S 𝑥 ′))
(Subst)

S (S (add 𝑦′ 𝑥 ′)) � S (add 𝑦′ (S 𝑥 ′))
(Case)

2: S (add 𝑦 𝑥 ′) � add 𝑦 (S 𝑥 ′)

(Refl)
Z � Z

(1)
(Refl)

S 𝑦′ � S 𝑦′
(Subst)

S 𝑦′ � S (add 𝑦′ Z)
(Case)

1: 𝑦 � add 𝑦 Z

(0) (2)
(Subst)

S (add 𝑥 ′ 𝑦) � add 𝑦 (S 𝑥 ′)
(Case)

0: add 𝑥 𝑦 � add 𝑦 𝑥

Figure 4. A cyclic proof that addition is commutative.

• (Case) where 𝑥 : 𝑑 is the variable upon which case
analysis is performed. If 𝑣𝑖+1 is the premise associated
with constructor 𝑘 using fresh variables 𝑥0, . . . , 𝑥𝑛 ,
then 𝑇𝑖+1 ≤ 𝑇𝑖 [𝑘 𝑥0 · · · 𝑥𝑛/𝑥].

• (Subst) with substitution 𝜃 . If 𝑣𝑖+1 is the lemma, then
𝑇𝑖+1𝜃 ≤ 𝑇𝑖 and if 𝑣𝑖+1 is the continuation, then𝑇𝑖+1 ≤ 𝑇𝑖 .

• Otherwise, 𝑇𝑖+1 ≤ 𝑇𝑖

When there is a strict inequality in the above definition,
we say that 𝑣𝑖 is a progress point.

Remark 3.3 (Progress points). Part of our intention with
this work is to relate rewriting induction to cyclic proofs.
It is, therefore, not possible to build a specific relationship
between derivations and progress points, as is done in e.g.
Brotherston’s work [7], because different rules will entail
a progress point for different orderings. For example, our
implementation is based on the substructural order where
progress points are marked by the (Case) rule, but a re-
duction order would also use (Reduce) and (Subst) as in
Section 4.

Lemma 3.3. Let (𝑉 , 𝑒, 𝑟, 𝑝) be a preproof with vertex 𝑣 ∈

𝑉 , let 𝛼 be an instance of 𝑒 (𝑣), and let (𝑖, 𝛽) be a preceding

instance. If𝑇0, 𝑇1 is a trace for the path 𝑣, 𝑝𝑖 (𝑣), then𝑇1𝛽 ≤ 𝑇0𝛼

and, in particular, 𝑇1𝛽 < 𝑇0𝛼 , if 𝑣 is a progress point.

The aforementioned lemma shows how a trace, as previ-
ously defined, leads to a monotonic sequence of terms by
closing those terms according to a sequence of preceding
instances that emerges as a consequence of Lemma 3.1. If
every path has a trace, then we can construct an infinitely
decreasing sequence of terms for any sequence of invalid
equations generated by Lemma 3.1. Thus we define a proof
as a preproof that satisfies the following global correctness

condition.

Definition 3.6. A ≤-(cyclic) proof is a preproof such that,
for every infinite path (𝑣𝑖 ), there is a suffix, i.e. (𝑣𝑖+𝑘 ) for
some 𝑘 ∈ N, which has a ≤-trace with infinitely many
progress points.

Because our definition of a trace and its progress points is
highly generic, it is undecidable if a sufficient set of traces
exists or not. This is a significant difference from proofs by
structural induction, whose validity is effectively a syntactic
well-formedness condition. Although undesirable, we will, in
practice, restrict the space of traces according to a particular
application as in Section 5. In particular, our implementation
only checks for traces composed solely of variables, which is
decidable. However, we chose not to overfit the declarative
system as alternative restrictions are equally valid. This point
is discussed further under related work.

Example 3.7 (Commutativity of addition). Fig. 4 displays a
preproof for the commutativity of addition. Note that there
are implicit applications of the (Reduce) rule in the S-case of
the root node, i.e. the rewriting of add (S 𝑥) 𝑦 to S (add 𝑥 ′ 𝑦)

in it’s left parent. And similarly throughout.
To show that this is also a ⊴-proof, we must consider

every infinite path and show they each have a suffix with an
infinitely progressing trace. There are three cycles we must
consider:

• One passing through 0 by following the continuation
in case associated with the S constructor, for which
the trace 𝑥, 𝑥 ′, 𝑥, 𝑥, . . . is sufficient. The decrease 𝑥 ′ ◁
𝑥 [𝑆 𝑥 ′/𝑥] marks a progress point.

• One passing through 1 by following the lemma in the
case associated with the Z constructor, for which the
trace 𝑦, 𝑦′, 𝑦, 𝑦, . . . is similarly sufficient.

• And finally, one passing through 2 by following the
lemma in case associated with the S constructor, for
which the trace 𝑦, 𝑦′, 𝑦, 𝑦, . . . is also sufficient.

These traces are informally depicted as coloured lines in the
preproof diagram with progress points marked by circles,
following [34].

Theorem 3.4 (Global soundness). Let ≤ be a stable well-

founded order. If (𝑉 , 𝑒, 𝑟, 𝑝) is a ≤-proof with some vertex

𝑣 ∈ 𝑉 , then ⊨ 𝑒 (𝑣).
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Remark 3.4 (A refinement of global correctness). Allowing
for traces that only cover a certain suffix of a path is particu-
larly useful in the context of cyclic proofs, as paths must be
ultimately periodic. It is, therefore, only necessary to find a
trace for every cycle. Note, however, cycles may overlap, and
so it is not sufficient to assign a single term to each vertex.

4 Rewriting Induction

As discussed in the introduction, automating traditional
inductive proofs is highly non-trivial, and many alterna-
tives have thus been proposed. One such well-developed
line of work is proof by consistency or inductionless induc-
tion [23, 30, 39]. Musser observed that if an equation can be
consistently added to a strongly complete theory, it is true of
its least model. The consistency of an equational theory, in
this case that ⊬ False = True, can then be verified by con-
verting the theory into a confluent and terminating rewrite
system by using the Knuth-Bendix algorithm [33].
Rewriting induction, due to Reddy, highlights its core

mechanisms [40]. The principal idea behind rewriting induc-
tion is to perform induction using a well-founded ordering
that includes the reduction relation Ð a łreductionž order. A
reduction order is more flexible than the substructural order
in that more terms are related. Furthermore, unlike the use
of a structural induction scheme, this approach can be easily
extended to mutually inductive datatypes as there is no need
to invent a complementary induction hypothesis.

For this section, we shall assume ≤ is a reduction order .
That is, a well-founded stable order such that each rewrite
rule𝑀 → 𝑁 ∈ 𝑅 is strictly decreasing, i.e. 𝑁 < 𝑀 .

The decreasing order ≺ is defined as the transitive closure
of the relation < ∪ ◁.

Lemma 4.1. ≺ is a reduction order.

A serious complication of rewriting induction, however,
is that all lemmas (including equations that play the role
of induction hypotheses) must also be orientated according
to the reduction order. Properties such as the commutativ-
ity of addition are, therefore, difficult to prove. Although
there are extensions that allow for unoriented equations,
the increase in complexity detracts from the advantage of
rewriting induction Ð its simplicity [2].
Furthermore, rewriting induction is highly sensitive to

the choice of order and choosing an order in advance is a
non-trivial task. For example, if the term add (add 𝑥 𝑦) 𝑧

is less than add 𝑥 (add 𝑦 𝑧), then it is impossible to prove
addition is associative without externally supplied lemmas.

Our cyclic proof system allows for both unoriented equa-
tions and is ambivalent to the choice of order, overcoming
these limitations. However, it is worth reiterating that we
have not provided a method for verifying the global condi-
tion, which is required in the general case.

Definition 4.1. Themost significant inference rule concerns
the expansion of an equation:

Expand𝐶 (𝐶 [𝑓 𝑀0 . . . 𝑀𝑛] = 𝑁 ) ≔

{𝐶 [𝐿]𝜃 = 𝑁𝜃 | 𝑓 𝑁0 · · ·𝑁𝑛 → 𝐿 ∈ 𝑅, 𝜃 = mgu(𝑀, 𝑁 )}

following the presentation used in [2].

This operator is used to perform case analysis of the vari-
ables, which are instantiated with constructors. However,
a critical part of this definition is that a reduction step has
occurred, and the left-hand side is, therefore, strictly smaller.
In other words, it marks a progress point for a reduction
order.

Definition 4.2 (Rewriting induction). The inference rules
of rewriting induction manipulate pairs (𝐸, 𝐻 ) of oriented
equations 𝐸 (denoted 𝑀 = 𝑁 , in contrast to 𝑀 � 𝑁 ) to be
proven, and rewrite rules 𝐻 that supplement the original
set 𝑅. The judgement ⊢ (𝐸, 𝐻 ) is inductively defined by the
rules of Fig. 5.

Note that although the rules from𝐻 must comply with the
reduction order, they needn’t be orthogonal to 𝑅 or behave
like a functional program. For example, add (add 𝑥 𝑦) 𝑧 →

add 𝑥 (add 𝑦 𝑧) is valid despite there already being rules that
govern the reduction of add.

Theorem 4.2 (Soundness). If ⊢ (𝐸, ∅) is a rewriting induc-

tion derivation, then every equation in 𝐸 is valid [40].

4.1 Translation to Cyclic Proof

Rewriting induction allows for previously seen equations
to be used as hypotheses. This circularity is not unsound as
hypotheses are only introduced through a strict decrease.

We will show that rewriting induction proofs can be trans-
lated into our cyclic proof system and, therefore, can be seen
as a form of cyclic proof search, see Theorem 4.3. Further-
more, as rewriting induction subsumes inductionless induc-
tion, a line of work that adapts the Knuth-Bendix completion
procedure to perform saturation based proofs by consistency,
our system also subsumes that approach [40].

We will construct a cyclic proof by induction over a rewrit-
ing induction derivation. Cyclic proofs discharge their hy-
pothesis globally rather than locally, and thus we need to
allow for undischarged hypotheses when reasoning locally
in this manner. We first define this generalisation of cyclic
proofs as follows:

Definition 4.3. A partial proof is a tuple (𝑉 , 𝐻, 𝑒, 𝑟, 𝑝)

where 𝑉 and 𝐻 are disjoint finite sets of vertices such that:

• For each 𝑣 ∈ 𝑉 ∪ 𝐻 , there is an associated equation
𝑒 (𝑣).

• For each 𝑣 ∈ 𝑉 , there is inference rule from Fig. 3
𝑟 (𝑣), and list of vertices 𝑝 (𝑣) ∈ (𝑉 ∪ 𝐻 )∗ called the
premises. We write 𝑝𝑖 (𝑣) for the 𝑖

th element of 𝑝 (𝑣)
starting with 𝑝0.
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(End)
⊢ (∅, 𝐻 )

⊢ (𝐸, 𝐻 )
(Delete)

⊢ (𝐸 ∪ {𝑀 = 𝑀}, 𝐻 )

⊢ (𝐸 ∪ {𝑀 ′
= 𝑁 }, 𝐻 )

(Simplify) (𝑀 →∗
𝑅∪𝐻

𝑀 ′)
⊢ (𝐸 ∪ {𝑀 = 𝑁 }, 𝐻 )

⊢ (𝐸 ∪ Expand𝐶 (𝑀 = 𝑁 ), 𝐻 ∪ {𝑀 → 𝑁 })
(Expand) (𝑁 < 𝑀)

⊢ (𝐸 ∪ {𝑀 = 𝑁 }, 𝐻 )

Figure 5. Inference rules of rewriting induction.

• And

𝑒 (𝑝0 (𝑣)) . . . 𝑒 (𝑝𝑛 (𝑣))

𝑒 (𝑣)

is a well-formed instance of the rule 𝑟 (𝑣).

Furthermore, partial proofs must also satisfy the global
condition that for every path (𝑣𝑖 ), there is a suffix, i.e. (𝑣𝑖+𝑘 )
for some 𝑘 ∈ N, which has a ⪯-trace with infinitely many
progress points.
We will refer to the elements of 𝐻 as hypotheses.

Intuitively, a partial proof is a proof where the hypotheses
𝐻 may be used as premises but needn’t be justified by an
instance of an inference rule themselves. Note that when 𝐻

is empty, we have a cyclic proof.

Theorem 4.3. If ⊢ (𝐸, 𝐻 ) is rewriting induction derivation,

then there exists a partial proof (𝑉 ′, 𝐻 ′, 𝑒, 𝑟 , 𝑝) where 𝐸 ⊆

{𝑒 (𝑣) | 𝑣 ∈ 𝑉 } and 𝐻 = {𝑒1 → 𝑒2 | 𝑒1 � 𝑒2 ∈ 𝐻 ′, 𝑒2 ⪯ 𝑒1},

i.e. the rewrite rules of 𝐻 are orientations of equations in 𝐻 ′.

Remark 4.1. Rewriting induction and related approaches do
not typically require a confluent rewrite system. Therefore,
this theorem only shows that our system subsumes rewriting
induction when confluence is taken as an assumption, which
is the case for our intended application. It is also worth
noting that we only require confluence when defining the
semantics of terms; we are confident that the proof system
could be made sound for non-confluent rewrite systems.

Cyclic proofs, for a generic sequent calculus, have been
shown to subsume traditional structural induction [6]. Al-
though this result is not directly applicable to our system,
which is specialised to unconditional equational reasoning,
we conjecture that an analogous argument could be made
with unconstrained usage of the (Subst) rule. For examples
of the translation from structural induction to proofs in our
calculus, see the long version of this paper [28].

5 Detecting and Verifying Cycles

Our proof system is designed to be used in a goal-orientated
manner. It is necessary to form cycles to produce a finite
proof, and subsequently, verify that the global condition has
been met. In this section, we discuss these high-level aspects
of our proof search algorithm.

There exists a generic cyclic theorem prover for sequent
calculi Ð the Cyclist system [9]. It is generic in that it sup-
ports an arbitrary set of inference rules. Given this setup,
it would be possible to naïvely enumerate derivations of
the goal formula and create cycles just when formulas are
repeated.

Sequents discovered earlier in proof search are intuitively
simpler in that they apply to a more general instance. For ex-
ample, consider the (Case) rule where only certain instances
of the conclusion will be relevant to each premise. Therefore,
it will often be necessary to generalise an equation to relate
it to an ancestor.

However, it is desirable to avoid generalisation as part of
normal proof search, as the space is often intractable and not
guaranteed to lead to a cycle [37]. The Cyclist framework
is thus parameterised by a łmatching functionž that detects
when cycles can be formed. The matching function for first-
order logic is a combination of weakening and substitution.
For separation logic, the matching function is the frame rule.

The capacity of the Cyclist framework for equational rea-
soning is known to be limited. For example, the commuta-
tivity of addition cannot be automatically proven without
the lemma add 𝑥 (S 𝑦) � S (add 𝑥 𝑦). Our observation is
that the existing matching functions are too restrictive for
equational reasoning.
The usual rules for equational reasoning, i.e. the congru-

ence axioms, are intractable due to the vast number of in-
termediate equations they create [3]. However, we cannot
simply avoid such equational reasoning in cyclic proofs as
they are often needed to form cycles. We thus propose the
substitution of equals as an alternative matching function,
appearing in our proof system as the (Subst) rule. This way
of closing cycles resembles the use of hypotheses as rewrite
rules in rewriting induction.

Algorithmically, (Subst) is only used as a matching func-
tion in a goal-directed manner. The task of generating useful
lemmas is a non-trivial and orthogonal concern [26]. For
a given goal equation Γ ⊢ 𝑀 � 𝑁 , any subterms that are
instances of the left- or right-hand side of an existing node
are considered and the goal is rewritten accordingly, leaving
the continuation premise as a new subgoal. Thus the lemma,
i.e. the first premise of (Subst), is always an equation that
has already appeared in the tree, acting somewhat like an
induction hypothesis.
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There is a significant novelty in using (Subst) as a match-
ing function not present in the Cyclist system Ð it doesn’t
completely close a branch of the derivation tree into a cycle
but leaves a new subgoal, i.e. the continuation, which must
also be solved.

5.1 Refining Substitution

While substitution is an appropriate technique for detecting
cycles, it can also create many redundancies when searching
for proofs that lead to performance issues. Therefore, we
only consider a subset of available lemmas for substitution
in our implementation. These are determined by the rule
used to justify the lemma:

• (Refl) Clearly, no useful lemma is justified by reflexivity
as the continuation is identical to the goal.

• (Reduce) We also do not consider lemmas justified by
reduction. This restriction follows naturally from the rea-
sonable strategy that we ought to reduce a goal as far as
possible before further reasoning. Suppose we have a goal
𝐶 [𝑀𝜃 ] � 𝑃 and a candidate lemma𝑀 � 𝑁 that is justified
by (Reduce). As the goal is assumed to be in normal form,
we know that 𝑀 is also in normal form. Thus there is a
premise 𝑀 � 𝑁 ′ where 𝑁 →∗

𝑅
𝑁 ′. We can apply this

lemma directly, to leave the continuation 𝐶 [𝑁 ′𝜃 ] � 𝑃 . Of
course, this is distinct from the continuation that we would
arrive at if we used the unreduced lemma, i.e. 𝐶 [𝑁𝜃 ] � 𝑃 .
However, if we normalise this original continuation to
𝑄 � 𝑃 ′, then, by confluence, the new continuation must
also normalise to 𝑄 � 𝑃 ′, and we can proceed as normal.
The comparison between these proofs can be seen in Fig. 6.

• (Subst) If a lemma is itself justified by (Subst), we can
use the secondary lemma directly as contexts and substi-
tutions are composable. Here we are observing that the
order in which lemmas are applied is associative. However,
choosing one of these as the canonical form, i.e. associating
nested instances into the continuation, increases perfor-
mance because the roles of the lemma and continuation
are not symmetric Ð we wish to reduce the number of
choices for the former. This argument can also be seen in
Fig. 6.

• Therefore, only those lemmas justified by (Case) are con-
sidered for substitution.

In the proof that addition is commutative, for example,
there are 16 vertices but only 3 instances of the (Case), a
significant reduction that mitigates the cost of verifying
cycles.

5.2 Verifying Cycles

Our global condition on paths is undecidable in general. If
we restrict our attention to traces comprising variables and
the substructural order, it becomes decidable. Informally,
this captures the space of typical proofs where induction
concerns an explicit variable.

A comparable result was first shown by reduction to Büchi
automata in the original work on cyclic proofs for first-order
logic with inductive definitions [6]. Two𝜔-regular languages
are extracted from a preproof: the path language and the
trace language. It can then be checked whether the path
language is included in the trace language, i.e. every path
has an infinitely progressing trace.

Unfortunately, checking the inclusion of Büchi automata
is doubly exponential in the number of vertices, as it involves
complementing the automata [38]. This procedure becomes
onerous if several candidate proofs, the majority of which
may be unsound, need to be checked throughout the proof
search. In the Cyclist theorem prover, soundness checking
could take a significant proportion of the proof time [47].

This approach to verifying cyclic proofs fails to take advan-
tage of the incremental nature of the goal-orientated proof
search, where proofs share a common prefix. Furthermore,
as soon as a cycle that does not satisfy the global condition is
detected, there is no advantage to completing the proof. In-
stead, we annotate the proof graph with an abstract domain
representing the 𝜔-regular language of paths Ð size-change
graphs, originally developed for termination analysis [35].
The workload is performed as each node is uncovered so
that the soundness condition is represented explicitly.

Definition 5.1. Let 𝑒 (𝑣) = Γ ⊢ 𝜙 and 𝑒 (𝑣 ′) = Γ
′ ⊢ 𝜙 ′ be

two vertices in a preproof (𝑉 , 𝑒, 𝑟, 𝑝). A size-change graph

between 𝑣 and 𝑣 ′ is a labelled bipartite graph between Γ

and Γ
′, i.e. a set of triples (𝑥, 𝑦, 𝑙) ∈ Γ × Γ

′ × {≃, ≲} where
the labels mark equality or a decrease which are possible
progress points.
We write 𝐺 : 𝑣 → 𝑣 ′ for such a size-change graph, 𝑥 ≃

𝑦 ∈ 𝐺 if (𝑥, 𝑦, 𝑙) ∈ 𝐺 for any 𝑙 , and 𝑥 ≲ 𝑦 ∈ 𝐺 if, specifically,
(𝑥, 𝑦, ≲) ∈ 𝐺 . Labels from a simple lattice with ≲ > ≃.

Definition 5.2 (Composition of size-change graphs). Given
two size-change graphs 𝐺 : 𝑣 → 𝑣 ′ and 𝐺 ′

: 𝑣 ′ → 𝑣 ′′, then
there is a size-change graph 𝐺 ′ ◦𝐺 : 𝑣 → 𝑣 ′′ defined as:

𝐺 ′ ◦𝐺 ≔ {(𝑥, 𝑧, 𝑙 ⊔ 𝑙 ′) | (𝑥, 𝑦, 𝑙) ∈ 𝐺, (𝑦, 𝑧, 𝑙 ′) ∈ 𝐺 ′}

That is, there is an edge 𝑥 ≃ 𝑧 whenever there exists
a variable 𝑦 and edges 𝑥 ≃ 𝑦 ∈ 𝐺 and 𝑦 ≃ 𝑦 ∈ 𝐺 ′. It is
decreasing if either edge is decreasing.

The following definition associates a canonical size-change
graph with each edge in a preproof. Intuitively, an edge
𝑥 ≃ 𝑦 ∈ 𝐺 (𝑣, 𝑣′ ) indicates that 𝑥, 𝑦 is a valid trace passing
from 𝑣 to 𝑣 ′, and that it is a progress point if 𝑥 ≲ 𝑦 ∈ 𝐺 (𝑣, 𝑣′ ) .

Definition 5.3 (The size-change graph of an edge). Let
(𝑉 , 𝑒, 𝑟, 𝑝) be a preproof. For each edge (𝑣, 𝑣 ′) ∈ 𝐸 of the
underlying graph, 𝐺 (𝑣, 𝑣′ ) : 𝑣 → 𝑣 ′ is defined as follows:

• If 𝑟 (𝑣) is an instance of (Subst) with substitution 𝜃

and 𝑣 ′ is the lemma, then there is a non-decreasing
edge 𝑥 ≃ 𝑦 ∈ 𝐺 (𝑣, 𝑣′ ) for all other variables such that
𝑥 = 𝜃 (𝑦).
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Δ ⊢ 𝑀 � 𝑁 ′

(Reduce)
Δ ⊢ 𝑀 � 𝑁

Γ ⊢ 𝑄 � 𝑃 ′

(Reduce)
Γ ⊢ 𝐶 [𝑁𝜃 ] � 𝑃

(Subst)
Γ ⊢ 𝐶 [𝑀𝜃 ] � 𝑃 ⇝

Δ ⊢ 𝑀 � 𝑁 ′

Γ ⊢ 𝑄 � 𝑃 ′

(Reduce)
Γ ⊢ 𝐶 [𝑁 ′𝜃 ] � 𝑃

(Subst)
Γ ⊢ 𝐶 [𝑀𝜃 ] � 𝑃

Λ ⊢ 𝑀 � 𝑁 Δ ⊢ 𝐷 [𝑁𝜃 ] � 𝑃 ′

(Subst)
Δ ⊢ 𝐷 [𝑀𝜃 ] � 𝑃 ′

Γ ⊢ 𝐶 [𝑃 ′𝜎 ] � 𝑃
(Subst)

Γ ⊢ 𝐶 [ (𝐷 [𝑀𝜃 ] )𝜎 ] � 𝑃 ⇝

Λ ⊢ 𝑀 � 𝑁

Δ ⊢ 𝐷 [𝑁𝜃 ] � 𝑃 ′
Γ ⊢ 𝐶 [𝑃 ′𝜎 ] � 𝑃

(Subst)
Γ ⊢ 𝐶 [ (𝐷 [𝑁𝜃 ] )𝜎 ] � 𝑃

(Subst)
Γ ⊢ 𝐶 [ (𝐷 [𝑀𝜃 ] )𝜎 ] � 𝑃

Figure 6. Redundancy of unreduced lemmas & Reassociation of nested substitution.

• If 𝑟 (𝑣) is an instance of (Case) and the variable being
analysed is 𝑥 , then there is a decreasing edge 𝑥 ≲ 𝑦

for each fresh variable 𝑦 introduced into 𝑣 ′ and a non-
decreasing edge 𝑧 ≃ 𝑧 for all variables.

• Otherwise, the size-change graph is simply the iden-
tity: 𝑧 ≃ 𝑧 for all variables in both environments.

The composition of these size-change graphs provides
traces for general paths. And, by taking a generalisation of
the transitive closure, we represent the space of possible
infinite traces.

Definition 5.4. The closure of a preproof 𝑃 = (𝑉 , 𝑒, 𝑟, 𝑝)

is a set of size-change graphs, cl(𝑃), such that

• For each edge (𝑣, 𝑣 ′) ∈ 𝐸, 𝐺 (𝑣, 𝑣′ ) ∈ cl(𝑃)

• If 𝐺 : 𝑣 → 𝑣 ′ ∈ cl(𝑃) and 𝐺 ′
: 𝑣 ′ → 𝑣 ′′ ∈ cl(𝑃), then

𝐺 ′ ◦𝐺 ∈ cl(𝑃)

Lemma 5.1. Suppose 𝑃 = (𝑉 , 𝑒, 𝑟, 𝑝) is a preproof with a

path 𝑣0, . . . , 𝑣𝑛 for some 𝑛 > 0, then there is a size-change

graph 𝐺 : 𝑣0 → 𝑣𝑛 ∈ cl(𝑃) such that whenever 𝑥 ≃ 𝑦 ∈ 𝐺

there is a trace 𝑥, . . . , 𝑦 for this path, which has a progress

point if 𝑥 ≲ 𝑦 ∈ 𝐺 .

As any infinite sequence of nodes is ultimately periodic, it
is sufficient to look for decreasing edges in the size-change
graphs representing cycles in the closure.

Theorem 5.2. A cyclic preproof 𝑃 = (𝑉 , 𝑒, 𝑟, 𝑝) is a proof if

every𝐺 : 𝑣 → 𝑣 ∈ cl(𝑃) such that𝐺 = 𝐺 ◦𝐺 has a decreasing

edge 𝑥 ≲ 𝑥 for some variable 𝑥 .

6 Implementation and Empirical
Evaluation

We implemented a prototype cyclic equational reasoning
tool as a plugin for GHC 9.0.2 Ð CycleQ. It currently sup-
ports a small subset of Haskell, including top-level recursive
functions, algebraic datatypes, and polymorphism. The user
adds equations to their program using the following syntax,
and the plugin will attempt to prove them at compile-time,
optionally outputting a cyclic proof graph if successful.

mapId :: List a -> Equation

mapId xs = map id xs ≡ xs

The tool performs a bounded depth-first search using the
inference rules from Fig. 3, in addition to a rule for function

extensionality and decomposition of datatype constructors:

∀𝑖 ≤ 𝑛 𝑀𝑖 � 𝑁𝑖

𝑘 𝑀1 · · · 𝑀𝑛 � 𝑘 𝑁1 · · · 𝑁𝑛

Although this rule is derivable from (Subst), we distinguish
it because it is not intended as a mechanism for creating
cycles and can be applied eagerly, in a goal-directed manner,
without incurring the cost associated with lemma generation.
Where more than one rule is applicable to a goal, the rules
are prioritised as follows: reduction, reflexivity, congruence,
function extensionality, subst, case analysis. Once applied,
the tool never backtracks past the first three as they always
simplify the goal without loss of generality. Furthermore,
case analysis always selects a variable preventing further
(non-strict) reduction, much like needed narrowing [1].

6.1 Evaluation

There are very few implementations of cyclic proof systems,
and their performance with equational goals is not well un-
derstood. The Cyclist system [9], which is certainly the
most developed, is known to have difficulty with equational
reasoning and has issues with the verification of cycles [47].
The primary objective of this evaluation is to demonstrate
that our system, although simple, is reasonably efficient,
avoiding a bottleneck in cycle verification.
We tested the tool against a standard benchmark suite

of 85 induction problems concerning natural numbers, lists,
and trees, originally used to test the IsaPlanner tool [20].
Since none of these concern mutual induction explicitly,
we also designed a small number of problems around the
representation of annotated, mutually recursive syntax trees,
as shown in the introduction. The results were obtained as
an average of 10 runs on a 2.20GHz Intel® Core™ i5ś5200U
with 4 cores and 7.5GB RAM.

The number of IsaPlanner benchmark problems solved in
a given time bound is plotted in Fig. 7. The tool was able
to solve 44 of the problems (13 were not in scope as they
concerned conditional equations), with 40 of those solvable
in under 100ms. The average time for solvable IsaPlanner
benchmarks was 129ms. All the mutual induction problems
were solved in 5.3ms on average.
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Figure 7. Summary of IsaPlanner benchmarks

6.2 Limitations

Although the tool performs efficiently on those 44 bench-
mark problems that it is able to solve, this number is rela-
tively small. By comparison: HipSpec proved 80, Zeno 82,
CVC4 80, ACL2 74, Inductive Horn Clause Solving 68, Isa-
Planner 47, and Dafny 45 (as reported by [14, 53]).

However, the following analysis shows that the problems
CycleQ could not solve are attributable to two features that
it lacks: conditional equations and lemma discovery, both of
which are essentially orthogonal to cyclic reasoning. Hence,
we expect that our tool can incorporate these features in
future work, which would allow for a more meaningful com-
parison.
First, many of the benchmark problems are themselves

conditional equations. Hence they simply fall outside of the
scope of our system.
Some further 23 benchmarks, although not themselves

conditional equations, require conditional equations inter-
nally in their proof. Problem 4 is a typical example Ð
S (count 𝑥 𝑥𝑠) � count 𝑥 (𝑥 : 𝑥𝑠). This can be solved by
performing case analysis on the equality predicate, by as-
suming 𝑥 == 𝑦 � False or 𝑥 == 𝑦 � True. Our system does
not currently have a mechanism for hypothetical reasoning
of this form. Since 𝑥 may take infinitely many values in each
case, and none of these enable a cycle, there is no other way
to progress with the proof.

As far as we are aware, there is no reason why our system
could not be extended in this direction (for example, by
formulating the proof system using a judgement with an
antecedent), but we felt it would overcomplicate the paper
without adding any interesting new ideas. These problems
account for all those that Dafny solved that our tool did not.
The second reason some problems were unsolved is that

they require lemmas, which was the case for the 4 remaining
problems [42]. Specifically, property 47 is provable by our
system when it is given the commutativity of max and 54, 65,

and 69 when given the commutativity of add. Most compara-
ble tools incorporate some form of lemma discovery, which
is very powerful but orthogonal to this work. It is worth
noting, however, that CycleQ solved a number of the bench-
mark problems designed to test strengthening and lemma
discovery, despite not having a specialised tactic for either.
We look to incorporate a theory exploration system into our
solver as future work, after which a direct comparison will
be more insightful.
A couple of problems took significantly longer to solve.

And, unsurprisingly, these required the construction of larger
proofs. There are several factors to which this could be at-
tributed: the branching factor of proof search, the increased
number of lemmas, or the cost of verifying the global correct-
ness condition. In any case, we believe theory exploration
could be used to mitigate this by allowing for smaller, more
compositional proofs.

7 Related Work and Conclusion

As inductive definitions are ubiquitous in computer science,
and functional programming in particular, a lot of work
has been dedicated to developing tools that automate or
aid equational reasoning over these structures. However,
as proof systems for inductive definitions don’t admit cut
elimination, most research is aimed at łlemmaž discovery [12,
26].
One technique for generating lemmas is to generalise

the current goal by identifying common subterms, as im-
plemented by ACL2 [5]. The heuristic was later refined by
the Zeno tool that checks for counterexamples to prevent
over generalisation, a common problem with the original
method [45]. It seems likely that the exploratory nature of
cyclic proofs could be used to suggest generalisations from
failed proofs without over-generalisation.
Proof planning was developed as a way to better control

heuristics in automated reasoning tools [11]. It gave rise to
Clam system and IsaPlanner [13, 20, 27]. A lemma discovery
strategy based on łripplingž, a form of rewriting used in proof
planning, was to construct a lemma from a failed proof [24].
However, the required higher-order unification became a
bottleneck to the technique’s success [13, 20, 27].

A radically different approach to lemma discovery is the-
ory exploration [14]. Instead of attempting to construct suit-
able lemmas analytically, theory exploration generates ran-
dom lemmas and attempts to prove them in an incremental
manner. It is currently the state-of-the-art lemma discovery
strategy, although it is hampered by scalability [26].
HipSpec is a tool that couples theory exploration with

a traditional first-order theorem prover [15, 43]. As with
the other approaches discussed so far, it ultimately relies on
induction schema and thus cannot handle mutual induction.
We plan to integrate a theory exploration strategy into our
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tool, thus combining powerful lemma discovery with mutual
induction.

The difficulties with induction has motivated a long line of
work in inductionless induction [23, 30, 39]. While initially
popular, as it can take advantage of general equational rea-
soning and rewriting techniques, the development of prac-
tical tools was limited [54]. However, the SPIKE theorem
prover was based on this work and has since adopted a form
of cyclic proof, but the relationship with our system is not
completely clear [4, 48].
Circular coinduction is a similar technique but for equa-

tions about coinductive structure [44]. Analogous to the
łexpandž operator in rewriting induction, the łderivativež of
an equation is taken before it can be used as a hypothesis,
where encodes the possible coinductive observations.

Although originally ill-suited to inductive theorem prov-
ing, many tools have successfully been built upon SMT
solvers [36, 41, 50]. More recently, induction has been incor-
porated into Horn clause solvers which, historically, struggle
with domains such as non-linear arithmetic or some complex
kinds of algebraic datatype [53].

Cyclic proofs have previously received attention for their
application to program verification. Specifically, a cyclic
proof system for separation logic has been given that au-
tomatically verifies that a program terminates [8, 51]. Cyclic
proof systems have recently been shown to subsume generic
model-checking algorithms such as: lazy-abstraction with
interpolants, property-directed reachability, and maximal
conservativity for infinite game solving [52]. As with the
generic cyclic theorem prover Cyclist, it is the choice of
łmatching-functionž or łcutž that determines exactly how
the verification algorithm operates outside of the usual rea-
soning on the abstract domain. Cyclic proofs have also been
applied to program synthesis for pointer manipulating pro-
grams [25].
The cost of verifying cycles has long been identified as

a bottleneck of any tool based on cyclic proofs. In Brother-
ston’s thesis, he proposed an alternative approach Ð łtrace
manifoldsž [7]. A trace manifold is a set of trace segments
that can be stitched together to construct a trace for any
given path. The trace segments are uniquely assigned, sim-
plifying the space of traces significantly but excluding some
complex cycles that might require different traces for the
same path segment. An alternative approach based on nor-
malising the forms of cycles has been proposed and shown
to be significantly more efficient [47, 49]. The algorithm is
polynomial. However, there is no characterisation of exactly
what patterns of cycles it is able to verify.
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